发布时间:2024-05-09
Relaxation oscillation, homoclinic orbit and limit cycles in a piecewise smooth predator-prey model
主讲人:黄继才
摘要:In this paper, we revisit a piecewise smooth fast-slow predator–prey model with Holling type I functional response and predator harvesting, where the harvesting rate is sufficiently small compared to the intrinsic growth rate of prey. The model undergoes two bifurcation mechanisms: (i) singular slow-fast cycle bifurcation, through which the model can have a unique and stable relaxation oscillation or homoclinic orbit; (ii) boundary equilibrium bifurcation, from which a unique and unstable limit cycle occurs. Additionally, we show the coexistence of a large-amplitude relaxation oscillation (or homoclinic orbit) and a small-amplitude limit cycle.
主讲人简介:黄继才,男,博士,教授,博士生导师。主要从事常微分方程定性理论、分支理论及其应用,几何奇异摄动理论及其应用,非光滑方程及其应用研究。在 JDE、JDDE、SIAP、SIADS、JMB、SAPM、BMB 等期刊发表学术论文五十余篇。
邀请人:李骥
时间:2024年5月10日(星期六)10:30-12:00
地点:科技楼南楼702室