报告人:徐平(美国宾州州立大学)
报告时间:2025年7月18日(星期五)15:00-17:00
报告地点:东31楼119会议室
报告摘要:In his study of Rozansky–Witten invariants, Kapranov discovered a natural L-infinity algebra structure on the Dolbeault complex of an arbitrary K?hler manifold X, where all multibrackets are
-multilinear except for the unary bracket. Motivated by this example, we introduce an abstract notion of Kapranov L-infinity algebras, and prove that associated to any dg Lie algebroid, there is a natural Kapranov L-infinity algebra. We also discuss the linearization problem. This is a work in progress with Ruggero Bandiera, Seokbong Seol, and Mathieu Stiénon.
报告人简介:徐平,美国宾州州立大学杰出教授,1990年博士毕业于美国加州大学Berkeley分校,曾获瑞士ETH Nachdiplom讲座学者,日本庆应义塾大学pathways讲座学者等荣誉。徐平教授主要从事非交换几何和数学物理等方面的研究,多项研究成果发表在包括 Duke Math.J, Asterisque, JEMS, Ann.Sci.écoleNorm.Sup., JDG, Crelle’s Journal, Math.Ann., Adv.Math., Comm.Math.Phys., IMRN等知名杂志上。
邀请人:向茂松