报告人:曹婉容 (东南大学)
报告时间:2025年10月23日(星期四)9:00-11:0
报告地点:腾讯会议:438-161-491
报告摘要:The stochastic Cahn–Hilliard equation (SCHE) provides a fundamental framework for modeling phase separation phenomena in binary alloys under thermal fluctuations. This work investigates the SCHE driven by additive space-time white noise and establishes the existence and uniqueness of an ergodic invariant measure in the fractional Sobolev space $H_{\alpha}$. To accurately capture the long-time statistical behavior, we propose a fully discrete numerical scheme that combines a finite difference method in space with a tamed exponential Euler method in time. We rigorously prove the strong convergence of the scheme with an explicit rate, uniformly in time, and demonstrate that the numerical solution admits a unique invariant measure that converges to the exact one as the discretization parameters tending to zero.
报告人简介:曹婉容,东南大学数学学院,教授,博士生导师,博士毕业于哈尔滨工业大学数学系,长期从事微分方程数值解、随机计算、非线性及非局部模型高效算法及仿真方面的研究,在SIAM Journal on Scientific Computing, Journal of Scientific Computing等国际主流计算数学期刊上发表论文 50 余篇。已主持或参与完成国家自然科学基金项目5项,目前主持在研国家自然科学基金面上项目1项。
邀请人:覃婷婷